Geleceğin Pilleri İçin Birlikte Çalışacak

 

TÜBİTAK Rusya Temel Araştırmalar Kurumu (RFBR) ile İkili İşbirliği Programı kapsamında desteklenmeye hak kazanan Boğaziçi Üniversitesi Kimya Mühendisliği Bölümü öğretim üyesi Doç. Dr. Damla Eroğlu Pala’nın projesi, geleceğin pilleri olarak görülen lityum-sülfür bataryaların daha uzun ömürlü olabilmesi için batarya performansıyla elektrolit tasarımı arasındaki ilişkiyi araştıracak. Rusya’dan Ufa Kimya Enstitüsü (Ufa Institute of Chemistry) ile iş birliği içinde yürütülecek projenin üç yıl sürmesi planlanıyor.

 

Geleceğin pilleri lityum-sülfür bataryalar

Cep telefonlarından bilgisayarlara ve elektrikli araçlara kadar kullanılan mevcut en gelişmiş batarya tipinin lityum-iyon bataryalar olduğunu belirten Doç. Dr. Damla Eroğlu Pala, henüz gelişmekte olan lityum-sülfür bataryaların ise beş kat daha fazla enerji depolayabileceğini vurguluyor: “Lityum-sülfür bataryalar henüz ticari olarak erişilebilir değil, ancak çok gelecek vadediyor; çünkü bir lityum-iyon bataryadan beş kat daha fazla teorik özgül enerji gösteriyor ve daha düşük maliyetli olma potansiyeline sahip.”

Lityum-sülfür bataryaların aktif madde olarak sülfürü kullanması da üretim maliyetini düşürüyor: “Lityum-iyon bataryalarda aktif madde olarak kobalt bazlı pahalı malzemeler kullanılıyor ve bunlar sadece belirli ülkelerin kontrolü altında. Oysa lityum-sülfür bataryalarda kullanılan sülfür hem doğada çok bulunuyor hem de ucuz ve toksik etkileri yok.”

Doç. Dr. Pala, lityum-sülfür bataryaların daha yüksek enerji depolama kapasitesine sahip olduğu için özellikle elektrikli arabalarda ve güneş ve rüzgâr enerjisinden üretilen elektriğin depolanmasında kullanılabileceğini de ekliyor.

Elektrolitte çözünebilir moleküller batarya ömrünü kısaltıyor

Bütün avantajlarına rağmen lityum-sülfür bataryaların günümüzde kullanılamamasının sebebi ise çok uzun ömürlü olmayışları: “Lityum-sülfür bataryalarda katotta çok sayıda ara reaksiyon oluşuyor ve bu reaksiyonlar sonucunda da elektrolitte çözünebilen lityum polisülfid denen moleküller ortaya çıkıyor. Bu moleküller anotla katot arasında polisülfid mekik mekanizması denilen bir taşınma mekanizmasına giriyor, bu da bataryanın kapasitesini çok hızlı kaybetmesine ve döngü ömürlerinin çok kısa olmasına neden oluyor.”

Bu sorunun bataryaların elektrolit tasarımlarını değiştirerek çözülebileceğini belirten Doç. Dr. Pala, projede neler yapacaklarını ise şöyle açıklıyor: “Bahsettiğimiz reaksiyon ve polisülfid mekik mekanizmaları hem elektrolit miktarı hem de elektrolitte kullanılan solvent ve tuz tipinden çok etkileniyor. Bizim yapmak istediğimiz aslında elektrolitin içindeki solvent ve tuzun özelliklerinin ve elektrolit miktarının bu mekanizmaları nasıl etkilediğini karakterize edebilmek. Bunun için birçok farklı türde elektrolit deneyerek bataryanın performansının nasıl etkilendiğine bakacağız.”

Lityum-sülfür bataryaların ticarileşebilmesi için yol gösterici olacak

Araştırma yöntemlerinin hem modelleme hem de deneysel çalışmalar içerdiğini belirten Doç. Dr. Damla Eroğlu Pala, “Deneysel olarak elektrolitin özelliklerinin, kompozisyonunun ve miktarının bataryanın içindeki reaksiyon mekanizmaları ve batarya performansını nasıl etkilediğini karakterize edeceğiz ve bu deneylerden elde ettiğimiz sonuçları geliştireceğimiz kuantum kimyası ve elektrokimyasal modellerle birlikte değerlendireceğiz,” ifadelerini kullandı.

Doç. Dr. Pala, proje kapsamında bir ürün geliştirme hedefleri olmasa da alınacak sonuçların lityum-sülfür bataryaların ticarileşmesi için yol göstereceği olacağını vurguluyor: “Lityum-sülfür bataryaların ticari olarak erişilebilir olması için spesifik enerji ve döngü ömürlerinin arttırılması gerekmekte, bu sebeple elektrolit miktarı ve özelliklerinin bataryada gerçekleşen reaksiyonları ve dolayısıyla batarya performansını nasıl etkilediğini görmeliyiz.”